Design and control of Static Converters

Joan Bergas
CITCEA-UPC

CO-AUTHORS: Sergi Fillet, Daniel Montesinos, Oriol Gomis, Antoni Sudrià
Design and Control of Static Converters

Power Converter as interface

DSP /Microprocessor as a Core

Applications

Motor Control

Distributed Generation

Grid Interface
Index

- Static Converters
- DSP core of application: From Hardware to software
- Inner current loop: power electronics building block.
- One topology, many applications:
 - DCM (Digital Motor Control).
 - Active Front-End.
 - Active compensator of Reactive energy
 - Active filter
 - Hybrid filters
 - Back-to-Back
 - UPS
 - Renewable power generators
 - Sag Generator.
- More over: CAN, CANOpen, IEC 1131.
Design and Control of Static Converters
DSP core of application: From Hardware to software
Inner Current loop: Power Electronics Building Block

- Torque
- Active/Reactive Power
- Voltage

Diagram showing the connections and blocks involved in the current loop, including:
- Iq*
- Ernq
- Id*
- Ernd
- PID
- Rotation
- Vq*
- Vd*
- Rotation^-1
- SVPWM
- LC Filter
- Rotor PLL
- Synchronism
- DSP
- Utility
Inner Current loop: Power Electronics Building Block
Digital Motor Control
Design and Control of Static Converters

Mechanical Angle (ϵ) -> Resolver -> Amplifier

Lowpass Filter + Amplifier

PWM

Delay γ

DAC 10bit

FIR Filter + Decimation

PLL

Angle

Speed

$\sin(\omega_{\text{exc}} t - \gamma)\sin(\epsilon)$

$\sin(\omega_{\text{exc}} t - \gamma)\cos(\epsilon)$

$\frac{1}{2}\sin(\epsilon) - \frac{1}{2}\cos(2\omega_{\text{exc}} t - \gamma)\sin(\epsilon)$

$\frac{1}{2}\cos(\epsilon) + \frac{1}{2}\cos(2\omega_{\text{exc}} t - \gamma)\cos(\epsilon)$

$\frac{1}{2}\sin(\epsilon)$

$\frac{1}{2}\cos(\epsilon)$
• Angle and speed determination
• Resolution increase
• Delay correction

\[
\begin{align*}
\sin(\varepsilon) &= y_Q \\
\cos(\varepsilon) &= y_D
\end{align*}
\]
Design and Control of Static Converters

CNC

PID

PID

Division

Rotation⁻¹

SVPWM

Park

Oversampling + PLL

1/ν Poles

1/ν Poles

Motor

Resolver

ν

ν

Sin

Cos

Exc

DSP
Design and Control of Static Converters
Grid Interface
\[\begin{bmatrix} v_r \\ v_s \\ v_t \end{bmatrix} = \sum_{k=1}^{\infty} \begin{bmatrix} V_+^k \\ \cos\left(w^k - \frac{2\pi}{3^k}\right) \\ \cos\left(w^k + \frac{2\pi}{3^k}\right) \end{bmatrix} \begin{bmatrix} \cos\left(w^k \cdot t + \varphi^k\right) \\ \cos\left(w^k \cdot t + 2\pi/3^k + \varphi^k\right) \\ \cos\left(w^k \cdot t - 2\pi/3^k + \varphi^k\right) \end{bmatrix} + V_-^k \]
\[I_r = \sqrt{2} I_{eff} \cos(\omega t - \theta) \]
\[I_s = \sqrt{2} I_{eff} \cos(\omega t - \frac{2\pi}{3} - \theta) \]
\[I_t = \sqrt{2} I_{eff} \cos(\omega t + \frac{2\pi}{3} - \theta) \]
\[I_d = I_{\text{eff}} \cdot \cos(\theta) \]
\[I_q = I_{\text{eff}} \cdot \sin(\theta) \]
Design and Control of Static Converters

I International Conference in Energy Innovation
Design and Control of Static Converters

I International Conference in Energy Innovation

[Diagram of a control system involving components such as PID, Reactive Regulator, Park, Rotation, SVPWM, SRF-PLL, and Vbus, with signals like Vbus, Ia, Ib, Iq, and error terms such as ErrV, ErrId, ErrIq.]
Back-to-Back
Design and Control of Static Converters
Harmonics and Their Rotation after a 60° Rotation

<table>
<thead>
<tr>
<th>Harmonics</th>
<th>Rotation after Rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_1^+</td>
<td>DC</td>
</tr>
<tr>
<td>V_1^-</td>
<td>-2ω</td>
</tr>
<tr>
<td>V_5^+</td>
<td>-6ω</td>
</tr>
<tr>
<td>V_7^+</td>
<td>6ω</td>
</tr>
<tr>
<td>V_{11}^+</td>
<td>-12ω</td>
</tr>
<tr>
<td>V_{13}^+</td>
<td>12ω</td>
</tr>
</tbody>
</table>
All Pass Filter
Remote generator (Off shore facility)

Removable power part: 500 kW

On shore installation
Design and Control of Static Converters